Analysis of the shape of a subwavelength focal spot for the linearly polarized light.
نویسندگان
چکیده
By decomposing a linearly polarized light field in terms of plane waves, the elliptic intensity distribution across the focal spot is shown to be determined by the E-vector's longitudinal component. Considering that the Poynting vector's projection onto the optical axis (power flux) is independent of the E-vector's longitudinal component, the power flux cross section has a circular form. Using a near-field scanning optical microscope (NSOM) with a small-aperture metal tip, we show that a glass zone plate (ZP) having a focal length of one wavelength focuses a linearly polarized Gaussian beam into a weak ellipse with the Cartesian axis diameters FWHM(x)=(0.44±0.02)λ and FWHM(y)=(0.52±0.02)λ and the (depth of focus) DOF=(0.75±0.02)λ, where λ is the incident wavelength. The comparison of the experimental and simulation results suggests that NSOM with a hollow pyramidal aluminum-coated tip (with 70° apex and 100 nm diameter aperture) measures the transverse intensity, rather than the power flux or the total intensity. The conclusion that the small-aperture metal tip measures the transverse intensity can be inferred from the Bethe-Bouwkamp theory.
منابع مشابه
Shaping a Subwavelength Needle with Ultra-long Focal Length by Focusing Azimuthally Polarized Light
Flat optics, which could planarize and miniaturize the traditional optical elements, possesses the features of extremely low profile and high integration for advanced manipulation of light. Here we proposed and experimentally demonstrated a planar metalens to realize an ultra-long focal length of ~240λ with a large depth of focus (DOF) of ~12λ, under the illumination of azimuthally polarized be...
متن کاملOptical characterization of subwavelength-scale solid immersion lenses
We present the fabrication and optical characterization of nano-scale solid immersion lenses (nano-SILs) with sizes down to a subwavelength range. Submicron-scale cylinders fabricated by electron-beam lithography (EBL) are thermally reflowed to form a spherical shape. Subsequent soft lithography leads to nano-SILs on transparent substrates, i.e. glass, for optical characterization with visible ...
متن کاملDemonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light.
We experimentally demonstrate the focusing of surface plasmon polaritons by a plasmonic lens illuminated with radially polarized light. The field distribution is characterized by near-field scanning optical microscope. A sharp focal spot corresponding to a zero-order Bessel function is observed. For comparison, the plasmonic lens is also measured with linearly polarized light illumination, resu...
متن کاملThe focus of light – linear polarization breaks the rotational symmetry of the focal spot
We experimentally demonstrate for the first time that a linearly polarized beam is focussed to an asymmetric spot when using a high–numerical aperture focussing system. (1959)] and can only be measured when a polarization insensitive sensor is placed in the focal region. We used a specially modified photodiode in a knife edge type set up to obtain highly resolved images of the total electric en...
متن کاملDesign, fabrication and characterization of subwavelength computer-generated holograms for spot array generation.
We report the analysis, design, fabrication and experimental characterization of novel subwavelength computer-generated holograms that produce uniform symmetric spot array. We distinguish between a polarization-sensitive and polarization-insensitive far-field reconstruction and show that a linearly polarized incident illumination is required in the former case in order to generate a symmetric r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 52 3 شماره
صفحات -
تاریخ انتشار 2013